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1. Summary and Maddalon (1982), which includes a review of litera-
, ) N , ture on laminar flow control, and of Reed and Saric

The linear and the nonlinear stability of disturbances (1986), which includes a description of the known physi-
that propagate along the attachment line of a three-ca| mechanisms associated with transition. Koerner et al.
dimensional boundary layer is considered. The spatially(1987) present a German perspective on the laminariza-
evolving disturbances in the boundary layer are com-tion of transport aircraft, and Gad-el-Hak and Bushnell
puted by direct numerical simulation (DNS) of the (1991) discuss separation control on wings. The most
unsteady, incompressible Navier-Stokes equations. Disyecent and comprehensive overview of experiments, the-
turbances are introduced either by forcing at the inflow ory, and computations related to boundary-layer transi-

or by applying suction and blowing at the wall. Quasi- tjon prediction and application to drag reduction is given
parallel linear stability theory and a nonparallel theory py Arnal (1992).

yield notably different stability characteristics for distur-

bances near the critical Reynolds number; the DNS  Contamination at the leading edge results from tur-
results confirm the nonparallel theory. The simulation bulence at a fuselage-wing juncture, which travels out
results show that suction stabilizes the quasi-two- over the wing and contaminates otherwise laminar flow
dimensional attachment-line disturbances, and blowingon the wing. If the Reynolds number of the attachment-
destabilizes these disturbances; these results qualitativelyine boundary layer is greater than some critical value,
agree with the theory. Previously, a weakly nonlinear then this contamination inevitably leads to turbulent flow
theory and computations revealed a high wave-numberover the complete wing; this phenomenon has been dem-
region of subcritical disturbance growth, which is a onstrated by Pfenninger (1965), Maddalon et al. (1990),
region where linear theory predicts the decay of small-and others. To correct this problem, Gaster (1965) placed
amplitude disturbances. More recent computations havea bump on the leading edge to prevent the turbulent
failed to achieve this subcritical growth. The present attachment-line boundary layer from sweeping over the
computational results duplicate and explain both subcrit-entire wing. This bump must be shaped to create a fresh
ically growing and decaying disturbances. Furthermore, stagnation point without generating a detrimental adverse
an explanation is provided for the previous theoretical pressure gradient. Outboard of the bump, a new laminar
and computational discrepancy. The present results demboundary layer forms.

onstrate that steady suction can be used to stabilize dis-

turbances that otherwise grow subcritically along the  Although the problem of turbulent flow that origi-
attachment line. However, true three-dimensional distur-nates from the fuselage-wing juncture and contaminates
bances are more likely in practice and are more stablehe entire wing can be avoided by using a device such as
than two-dimensional disturbances. Disturbances generthe Gaster bump, a Reynolds number exists beyond
ated off (but near) the attachment line spread both awaywhich disturbances generated by surface imperfections
from and toward the attachment line as they evolve. Fur-or particulates on the wing, when combined with noise,
thermore, the results show that suction stabilizes the diswill eventually cause transition. If we assume that the
turbances that develop off the attachment line. Clearly,initiated disturbances are sufficiently small, hydrody-
disturbances that are generated near the attachment lineamic stability theory could potentially be used to predict
can supply energy to attachment-line instabilities, butthe spatial amplification and the decay of the distur-
suction can be used to stabilize these instabilities.bances along the attachment line. Gaster (1967) first
Finally, symmetric and asymmetric disturbance growth examined this small-amplitude disturbance problem by
predicted by a two-dimensional-eigenvalue approach isusing acoustic excitation along the attachment line of a

demonstrated to agree with the DNS results. swept cylinder model. Gaster fed the flow sine waves
with various frequencies that were detected by a hot-film
2 Introduction gauge on the attachment line. He noted that the recorded

oscillations had preferred frequency bands that changed
On a swept wing, many instability mechanisms with tunnel speed and that this behavior was similar to
occur that can lead to the catastrophic breakdown of lam-that of traveling-wave instabilities. From his measure-
inar to turbulent flow. Contamination along the leading ments, he concluded that the small-amplitude distur-
edge, Tollmien-Schlichting waves, stationary or travel- bances in an attachment-line boundary layer were stable
ing cross-flow vortices, Taylor-Gartler vortices, or com- for momentum-thickness Reynolds numb&gs below
binations of these modes are among the mechanisms thdt70 (the critical Reynolds number was outside the exper-
can lead to this breakdown. For brevity, the discussionimental range); this value for the critical Reynolds
here is limited to disturbances in the region of the attach-number is close to the theoretical value of 200, which
ment line. For a more complete discussion of transitionis obtained by assuming a two-dimensional (2D)
to turbulence on swept wings, refer to the work of Tuttle attachment-line boundary layer. Later, Cumpsty and



Head (1969) experimentally studied large-amplitude dis-
turbances and turbulent flow along the attachment line of
a swept-wing model. They observed that laminar flow is
stable to small-amplitude disturbances upRg= 245
(which corresponds to the top speed of the tunnel).
Cumpsty and Head note that this observation remains
consistent with the theoretical value. At the same time,
Pfenninger and Bacon (1969) used a wing swept to 45
to experimentally study the attachment-line instabilities
in a wind tunnel that was capable of the larger speeds
necessary to obtain unstable disturbances. With hot
wires, they observed regular sinusoidal oscillations with
frequencies comparable with the most unstable 2D
modes of theory; these modes caused transition to occur
at Rg=240. A continued interest in transition initiated
near the attachment line of swept wings led Poll (1979,
1980) to conduct additional experiments. With the swept
circular cylinder model of Cumpsty and Head (1969), Figure 2.1. Sketch of attachment-line region of swept Hiemenz
Poll defined criteria for the onset of turbulence and iden- flow.

tified the forms of the disturbances present in the flow.
Like Pfenninger and Bacon (1969), Poll observed distur-

. ) [ h I h h li
bances that amplified along the attachment line. He noted 2" disturbances that propagate along the attachment line

of swept Hiemenz flow; the DNS results agreed with
that no unstable modes were observed bétgw= 230. Hall, Malik, and Poll (1984) near branch Il of the neutral

With an eigenvalue problem approach, Hall, Malik, curve but were in disagreement near branch I. Theofilis
and Poll (1984) studied the linear stability of distur- (1993a) attributed this disagreement between DNS and
bances in the attachment-line boundary-layer flow calledtheory to a lack of DNS grid resolution near branch I.
“swept Hiemenz flow,” which is illustrated in figure 2.1. Small-amplitude DNS computations by Jiménez et al.
This 3D base flow is a similarity solution to the Navier- (1990) led to results that agreed with the linear results of
Stokes equations; hence, its use is advantageous in stabiHall, Malik, and Poll (1984) for both branch | and branch
ity analyses. By assuming periodic disturbance modesl!! of the neutral curve.
along the attachment line, Hall, Malik, and Poll (1984)
determined neutral curves with and without the presence  In summary, table 2.1 shows that both the experi-
of steady suction and demonstrated that the attachmentMents and calculations agree (approximately) for the
line boundary layer theoretically can be stabilized with critical Reynolds number at which small-amplitude dis-
small amounts of suction. Hereafter the Hall, Malik, and turbances begin to amplify.

Poll (1984) approach is referred to as a “nonparallel

theory” because the study accounted for all linear terms, ~ As the initial amplitude of the disturbances in the
including the wall-normal velocity component of the attachment-line region become large, the experimental
base flow. Spalart (1989) used a direct numerical simula-results show considerable discrepancy between the onset
tion (DNS) approach, based on the fringe method, toOf transition and the linear critical Reynolds number.
study the leading-edge contamination problem. Small- Pfenninger and Bacon (1969) placed a wire upstream
amplitude disturbances were initialized with white noise. of the attachment line and generated large-amplitude
Reynolds number test points were selected in both the

stable and unstable regime to assess the validity of the , , - ] )
nonparallel theory by Hall, Malik, and Poll (1984). At Table 2.1. Expgrlmgntal and Theorgtlcal Critical Points for Linear
the lower Reynolds number, all disturbances decayed:; at Instabilities in Attachment-Line Boundary Layers

the higher number, at least one mode was amplified. Th

critical Reynolds number predicted by Hall, Malik, and Reference CriticaRg
Poll (1984) fell within the Reynolds number range used Experiment

by Spalart; the results of the simulations indicate good| Cumpsty and Head 1969 245
qualitative agreement with the linear theory. Further-| Pfenninger and Bacon 1969 240
more, Spalart (1989) demonstrated that classical POl 1979 1980 230
Hiemenz flow is stable to b linear and nonlinear Theory

modes. Theofilis (1993a) performed DNS of the 2D lin- | Hall, Malik, and Poll 1984 245




fluctuations in the boundary layer. They observed transi-important away from the attachment line and that low-
tion at Ry = 155. In his study of leading-edge contami- frequency modes become the dominant mechanism (i.e.,
nation, Pfenninger (1965) discovered through in-flight stationary cross-flow modes). Lin and Malik (1994) per-
experiments that laminar flow could be obtained for formed 3D linear computations which showed that, in
Rg <100, for Ry>100, leading-edge contamination addition to the dominant 2D symmetric wave (studied
occurred. In their wind-tunnel experiments on a swept here), both asymmetric and symmetric modes can be
airfoil, Gregory and Love (1965) found that fBg > 95 unstable depending on the Reynolds number. Hence, evi-
complete turbulence occurred. Flight tests by Gasterdence of 3D modes on or near the attachment line has
(1967) showed that turbulent spots were first present attheoretically been demonstrated.

Rg > 88. Cumpsty and Head (1969) and later Poll (1985)
used a swept model in a wind tunnel to show that turbu-
lence was damped fd?, <99 and that the leading edge
was fully turbulent folRg > 114. Namely, forRg < 100,
disturbances are damped (turbulence decay), and fo
Rg>100, the flow becomes turbulent (note the wide
gap between the linear critical Reynolds number of
Rg =245 and the turbulent-decay Reynolds number of

Bridging the understanding of the gap between the
Reynolds number region of linear instability (table 2.1)
and the lower Reynolds number region where turbulence
|i,s suppressed (table 2.2) is important for nacelle and
swept-wing design. As a first step toward understanding
this inherently nonlinear 3D process, the present study
focuses on validating the linear theories, studying the
nonlinear subcritically growing disturbances, and exam-

Ry =100). Table 2.2 summarizes the experimental . : ; )
0 m
results which indicate the Reynolds number when :::1'29 3D linear disturbances on and off the attachment

turbulence no longer decays and can fully contaminate™ ™
the attachment-line flow. In section 3, the physical and mathematical descrip-
tion of the problem is formulated. In sections 4 and 5, a
well-tested 3D spatial DNS code described by Joslin,
Table 2.2. Expgrimental Critica! Points for Turbulence Streett, and Chang (1992, 1993) is used to independently
Suppression in Attachment-Line Boundary Layers study both the linear and nonlinear instabilities that ini-
tiate and develop along the attachment line of a swept

_EXpe”me”t Bypas®, Hiemenz flow. Regions near both branches (I and I1) of
Pfenninger 011965 100 the neutral curve are investigated with DNS to simulta-
g;esgg:ylg& Love 1965 Bgigi neously verify the form of the disturbances used in the
Cumpsty and Head 1969 100 DNS and the nonparallel theory (eigenvalue approach) of
Poll 1985 100 Hall, Malik, and Poll (1984) for infinitesimal distur-

bances. A resolution to the discrepancy between the
weakly nonlinear theory and supporting computations by
Hall and Malik (1986) strived to bridge the gap Hall and Malik (1986) and the two recent DNS computa-

between the nonparallel linear theory and bypass transifions is described in section 5. Furthermore, steady suc-
tion Reynolds numbers by studying large-amplitude dis- tion is used to control the nonlinear disturbance growth.
turbances with weakly nonlinear theory and temporal Finally, section 6 describes a newly developed 3D DNS
DNS. They note that subcritical disturbance growth is c0de (which has no approximation for periodicity) and
observed at wave numbers that correspond to branch Il oPreésents results for symmetric and asymmetric distur-
the neutral curve. Consistent with the experimental Pances generated on and off (but near) the attachment
results, large-amplitude disturbances become unstabldine-

before the linear critical point and approach equilibrium )

states near branch I of the neutral curve. Both Jiménez3. Problem Formulation

et al. (1990) and Theofilis (1993b) failed to find this In general, the velocities = (i,¥,) and the pres-

region of subcritical growth with a temporal DNS code. o ,1e 5" are solutions of the incompressible, unsteady
Jiménez et al. (1990) contend that this subcritical growth\4vier-Stokes equations. The instantaneous velodities

region does not exist. and the pressur@ may be decomposed into base and

Using asymptotic analysis, Hall and Seddougui disturbance components as

(1990) studied oblique waves and their interaction in

attachment-line flow at the large Reynolds number limit. u(x,t) = U(x) +u(xt) % (3.1)
They note that close to the attachment line a small band p(x,t) = P(X) + p(xt) O

of destabilized oblique modes appear, interact with the
2D mode, and cause a breakdown of the 2D mode. Inwhere the base flow is given by the velocities
addition, they note that obligue modes become lessU = (U,V,W) and the pressure, and the disturbance

3



component is given by the velocities= (u,v,w) and where the equations are nondimensionalized with respect
the pressurep. A Cartesian coordinate system to the attachment-line velocity ,, the length scal®,

X = (xY,2) is used in whichx is aligned with the  and the kinematic viscosity.

attachment liney is wall normal, andz corresponds to A mean, or steady, solution of the Navier-Stokes

tmhgn?lriiztlon of flow acceleration away from the attach- equations is sought that obeys the following conditions:
At the wall, we require that

3.1. Base Component
_ _ U=W=0q

The mean, or base, flow of interest is referred to as 0 (y=0) (3.6)
swept Hiemenz flow. Shown in figure 2.1, the fluid V=Y, O
comes obliquely down toward the wall; it turns away
from the attachment line into thez-directions to forma  and sufficiently far away from the wall,
boundary layer. In the-direction, the flow is uniform. In
the absence of sweepl, is equal to 0 and the flow

reduces to the 2D stagnation flow first described by U-U, E
Hiemenz (1911). Wher® ,,V W, are velocity scales, 20 (y » ) (3.7)
andL is the length scale in the flow-acceleration direc- W - W0[ 0
tion Z, a length scale (factor of the boundary-layer thick- 0
ness) is defined in th&¥Zplane asd = ,/VL/W,; a
Reynolds number, aR = U06/v = 2.47R,; and a The velocity field for this similarity solution is
transpiration constant, as = Vo, /L/vWO, where 0
for the zero-suction case. If the attachment line is u(y) = a(y) 0
assumed to be infinitely long, the velocities become 1 O
functions ofZ andY only, and the similarity solution can V(Y) = =w(Y) O
be found. R U (3.8)
7 O
The swept Hiemenz formulation was originally W(Y,Z) = EQW(Y)%

described by Hall, Malik, and Poll (1984), where a linear

stability analysis of the flow was performed. The respec- g, hqfityting the nondimensional velocities (egs. (3.8))
tive velocities and pressure for swept Hiemenz flow are into theZ momentum equation (3.5) results in
{U,V,W,P} and the governing equations are given as '

2 A
0P, 2 d'W

U, 0V, oW _ o,z d%
0Z R? gy

ax "y O_Z_O (3.2)

oo
2s

gadW, Zg2 - (3.9)
2
R

AN

U oy +V oJ +W oy As Y - o, theZ momentum equation (3.9) reduces to

oX oY 0Z

2 2 200 Z _ 0P
= _g_)P(+éELU2+a_LZJ+a_UD (3_3) —2 = —a—z (3.10)
bx“ oay° oaz°C R
Y v oy v W v Integrating equatipn (3.10), we can infer Fhat the required
X oy 27 pressure form satisfying equations (3.7) is
2 2 2
P, 10°v a7V 9°VvU 2
=~ TRES T ot B0 (3.4) P = Po—lz— (3.11)
ox= oy~ oaz°U 22
U %ixv iy %iYV LW %iZV whereP, is the constant pressure at the attachment line.
Substitute the velocity form (egs. (3.8)) and the pres-
_ 0P 192W °W  92wL sure form (eq. (3.11)) into the Navier-Stokes equations
= -3 *5 + + C (3.5) (egs. (3.2)—(3.5)). Then by substituting the continuity
0Z Rpx? av2 a7C AT ; :
X equation into the momentum equations and subtracting



theY andZ momentum equations, the following ordinary 3.2. Disturbance Component

differential equation system ferv,w  results: The disturbance portion of equations (3.1) is found

by solving the 3D incompressible Navier-Stokes equa-

W aql/ -0 (3.12) tions in disturbance form as
%—:+(U+u)g F(VH) (W w %
d’0 . di A0,
X% av? az C
3~ N 2~
IR Vo g AP (3.14) TRV Zrewew 5
dy? HYH T gy?
sV L = 25 é@v a_v+a_\£[ (3.18)
subject to the boundary conditions given by ox* ay? azC
R Wy +(U+u) W vy 2 (w+w)glz"
dy ~ [ oW
. 0 (Y =0) (3.15) +(V+V)5—Y+W§
V = K 0
A 0 0
w=0pg - "E é@; _";’ _V;’D (3.19)
Bx® ay? 9z°0
dv 0 with the continuity equation and boundary conditions
CL NS
w-1 U0  (Y-w)F '

In the absence of sweep, equations (3.12)—(3.16) reducg, Attachment-Line Disturbances for 2D
to the famous 2D stagnation flow as first described byAssumptlon
Hiemenz (1911).

Note that in the character of this similarity solution, 4.1. Form of Disturbances

U andV are uniform along the attachment line and In general, disturbances on and near a 3D
varies linearly with distance from the attachment line. attachment-line region are of the 3D nature and require
Because of the properties of this base flow, both tempo-solutions of the full 3D Navier-Stokes equations. How-
ral and spatial DNS approaches should yield equivalentever, as assumed in the original theoretical study by
results in the 2D limit for small-amplitude disturbances. Hall, Malik, and Poll (1984) and confirmed in the DNS
However, the temporal DNS assumes that disturbancexomputations by Spalart (1989), a single mode in the
are growing in time and that there exists a linear transfor-attachment-line region of swept Hiemenz flow can take
mation from temporal growth to the realistic spatially the form that had a linear variation of the chordwise
growing instabilities. Hall and Malik (1986) realized velocity component with distance from the attachment
subcritically growing instabilities with a temporal DNS line. In the present study, an alternate disturbance form is
code, and hence the difference between the weakly nonfirst used. Namely, the velocity componentf the dis-
linear theory and the previous computations should notturbance and the transverse shear of the mean flow are
be attributable to the temporal DNS approximation. negligible; the disturbance becomes truly 2D along the
Although many previous studies have made use of theattachment line. This condition implies that= 0 and
temporal approach because of the computational saving®w/0Z = 0 on the attachment line. Although this sim-
over the spatial formulation, the spatial and temporal for- plification is not consistent with the equations of motion,
mulations are only related in the linear limit, with the it turns out that the neglected terms have little effect on
spatial formulation being more representative of the truethe qualitative behavior of the computed disturbances.
physical problem. This assumption allows us to use a preexisting DNS
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solver, which has been tested for 2D instabilities and 3Ddetail by Streett and Hussaini (1991), Danabasoglu,
spanwise periodic disturbances in 2D and 3D base flowsBiringen, and Streett (1990, 1991), and Joslin, Streett,
This 2D assumption is arguably valid because the flow isand Chang (1992). For boundary-layer flow, four
overwhelming dominated by the flow in the attachment- Poisson-Dirichlet problems are solved for the discrete

line direction. mode that corresponds to the zero eigenvalue of the sys-
tem; singlePoisson-Neumann problems are solved for all
4.2. Numerical Methods of Solution other modes.

A well-tested 3D spatial DNS code described by The buffer-domain technique introduced by Streett
Joslin, Streett, and Chang (1992, 1993) is used to indeand Macaraeg (1989) is used for the outflow condition.
pendently study both the linear and nonlinear instabilities As shown by Joslin, Streett, and Chang (1992) for the
that initiate and develop along the attachment line of aflat-plate boundary-layer problem, a buffer length of
swept Hiemenz flow. three disturbance wavelengths is adequate for traveling

waves. The disturbances are assumed to be from the dis-

In the attachment-lineX) direction, fourth-order . oo spectrum, which exponentially decay with distance
central finite differences are used for the pressure equazom the wall. Both at the wall and in the far field. homo-
tion and sixth-order compact differences are used for the ' ’

) : L ; geneous Dirichlet conditions are imposed. The base flow
momentum equations in the interior of the computational is used for the inflow boundary condition.
domain. At the boundary and near-boundary nodes,
fourth-order forward and backward differences are used.  Finally, disturbances are forced as unsteady inflow
The discretization yields a pentadiagonal system for theconditions or by unsteady suction and blowing of the
finite-difference scheme and a tridiagonal system for thewall-normal velocity component through the wall. For
compact-difference scheme. The approximations can behe former forcingu andv profiles that are normalized
solved efficiently by appropriate backward and forward by u,,,. are generated by some theory (e.g., quasi-
substitutions. parallel linear stability theory), and an amplitude is
o imposed. For the later forcing, a harmonic source is
In the wall-normal Y) direction, the Chebyshev introduced, the amplitude is based on the wall-normal

series is used to approximate the disturbances at Gaus?/'elocity, and the wave profiles develop naturally in the

Lobatto collocation points. A Chebyshev series is used iNgow. A similar technique has been used by (among oth-

e S00K 1220 19) Danabasagl, Gitngen, and Sieet (1993) in he
gn-g g ‘study of flow control by suction and blowing in a chan-

Furthermorg, Fhe use of as fgw grid points as poSSIbIeneI flow. Although the disturbances may be generated by
results in significant computational cost savings. In par-

ticular, the use of the Chebyshev series enables an effi-random freqqency input, the dis;urbances O.f interest h_ere

cient 'pressure solver. Because this series and it&'e forced with knov_vn frequenm_es. Essentlally,_th|s dis-

associated spectral opérators are defined—ari] and Rurbance generator is an alteratlon.to the no-slip bound-
; : . ary conditions, which are conventionally used for the

the physical problem of interest has a truncated domaur\NaII condition in a viscous flow problem

[0,Ymad. @ transformation is employed. Furthermore, a '

stretching function is used to cluster the grid near the

wall. For further details on the properties and the use of

spectral methods, refer to Canuto et al. (1988). An assessment is made in regard to the value of the
Orr-Sommerfeld—Squire equations (OS) formulation in

used with implicit Crank-Nicolson differencing for nor- attachment-line flow. Note that OS involves a quasi-

mal diffusion terms; an explicit three-stage Runge-Kutta paraII_eI flow a!ssump_tion (1.ey - 0) and that nho ampli-
(RK) method by Williamson (1980) was used for the tude information is included in _the the_ory. Figure 4.1
remaining terms. For details of the time-marching proce- SNOWs the neutral curves predicted with both the OS

dure, refer to Joslin, Streett, and Chang (1992). The inter-SOIVer anﬁ_ tr?e linear t?eor)ql ﬁf Hall, Malik, and Poll
mediate RK velocities are determined semi-implicitly, (1984). which accounts for all linear terms (i.e., nonpar-

the pressure is found by solving the Poisson equation,a”el theory). The nonparallel theory allows for a devel-

and the full RK stage velocities are obtained by correct-OPINg boundary layer (i.ey # 0). The largest dis-

ing the intermediate velocities with the updated pressure.agr_eement in these results appears near the.critical-point
This system is solved three consecutive times to obtain©91on- Although accurate growth rates of disturbances
full time-step velocities may not be obtained with OS as a result of the quasi-

parallel constraint, a good estimate of disturbance wave-
To satisfy global mass conservation, an influence- lengths can be obtained. For example, i&th 800 and
matrix method is employed and is described in somew = 0.1271, Hall, Malik, and Poll (1984) listed the wave

4.3. Linear Stability of Swept Hiemenz Flow

For time marching, a time-splitting procedure was
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numbera, = 0.3385. According to OS for the same Rey- a grid of 661 points<60 points per wavelength) along

nolds number

and frequency,

the wave numberthe attachment line and 81 points in the wall-normal

o, =0.3382 is obtained. Therefore, the terms that aredirection. The far-field boundary is located ad36om
neglected in the governing OS equations, but retained inthe wall, and the computational length along the attach-
the Hall, Malik, and Poll (1984) theory, primarily affect ment line is 216.5& This attachment-line length corre-
the growth and decay rates of the instabilities. Obviously, sponds to 11 wavelengths fBr= 570 andw = 0.1249.

the spatial growth of the disturbances are of primary For the time-marching scheme, the disturbance wave-
importance in transition studies; however, the OS tool length was divided into 320 time steps per period for
can be used to quickly generate base disturbance quantsmall-amplitude disturbances and into 2560 time steps
ties such aq, =f(Rw) and profiles. These quantities can for large-amplitude disturbances (stability consider-
be used, for example, to determine the initial states forations). The total Cray Y-MP computer time for a simu-
simulations. Although beyond the scope of the presentlation with a single processor was 1.5 hr for small-
study, this comparison indicates the accuracy of OS inamplitude disturbances and 12.0 hr for large-amplitude
predicting attachment-line instabilities and demonstratesdisturbances.

how the nonparallel theory of Hall, Malik, and Poll

(1984) improved upon conventional OS.

Disturbances for the first simulations are forced
at the computational inflow with an amplitude of

Figure 4.1 and table 4.1 show the locations on theA=0.001percent (i.e., arbitrary small amplitude). A
Reynolds number—frequency plane where the DNS isReynolds numbeR of 570 and a frequenay of 0.1249
used to study the linear and nonlinear instabilities for thecorrespond to the region of subcritical growth found by

attachment-line flow. The siahations are péormed on

.20

15

w .10

.05

Figure 4.1. Neutral curves, region of subcritical disturbance
growth, and computation test points for DNS in attachment-line

Subcritical nonlinear growth region of
- /Hall & Malik 1986
L M 0; ------ [ Stable
J
B L Unstable
x  DNStest points
- ---- Hall, Mdik, & Poll 1984
— Os
L 1 L 1 L 1 L 1 L 1 L |
6 8 1.0 12 14 1.6x103
R

boundary layer.

Table 4.1. Computational Test Points for DNS

R w
570 0.1249
684.2 0.1150
684.2 0.1200
684.2 0.1230
684.2 0.1249
684.2 0.1300

Hall and Malik (1986), where disturbances are linearly
stable. Disturbances that evolve in both a base flow that
complements the quasi-parallel OS assumptidis Q)

and the full, swept Hiemenz flow are computed with
DNS. Figure 4.2 shows the computed disturbance decay
rate and the wavelength in the quasi-parallel flow agree
exactly with OS. The disturbance that propagates in the
complete swept Hiemenz flow closely retains the wave-
length predicted by OS but decays at a slower rate than
that predicted by OS. This change in decay rate is consis-
tent with the theory of Hall, Malik, and Poll (1984).
From this comparison, we find that the wall-normal
velocity V terms in the stability equations have a destabi-
lizing effect on the disturbance, which results in the mod-
ified neutral curve shown in figa 4.1. This destabilizing
influence of the wall-normal linear terms for attachment-
line boundary layers is consistent with previous studies
on flat-plate Blasius flow. (See El-Hady and Nayfeh
1978; Gaster 1974.)

4.4. Neutral-Curve Region

Additional simulations were conducted in the
regions near branches | and Il and in the critical Rey-
nolds number region to confirm the neutral curve pre-
dicted by the theory. In the region near branch II, the
disturbances were forced by suction and blowing at the
wall with an amplitudé of 0.001 percent arid = 684.2.
The growth and decay of various frequency waves are
compared with the neutral solution in figure 4.3. The
results are in agreement with the neutral curve predicted
theoretically by Hall, Malik, and Poll (1984), computed
by Spalart (1989), and computed more recently by
Jiménez et al. (1990) and Theofilis (1993a, 1993b). This
suggests that the chordwise strain contribution, which
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Figure 4.3. Simulated two-dimensional disturbance amplitudes
near neutral curve of attachment-line boundary layer at

R=684.2.
Table 4.2. Stable or Unstable Regions for Test Points of Table 4.1
R () Region
u 570 0.1249 Stable
684.2 0.1150 Unstable
684.2 0.1200 Unstable
684.2 0.1230 Stable
684.2 0.1249 Stable
684.2 0.1300 Stable

| differ in the subcritical behavior of disturbances. To
250 resolve this discrepancy, the computed results from the
present study are compared with the previous studies of
Hall and Malik (1986), Jiménez et al. (1990), and

Figure 4.2. Simulated two-dimensional disturbance evolution in Theofilis (1993b). In addition, the effects of suction on
parallel ¥ = 0) and nonparallel attachment-line basic flows for |, stable modes are documented.
R =570 andv = 0.1249. Samples at= 0.86.

Figure 4.4 shows the evolution of the fundamental
wave, the mean-flow distortion, and the harmonics from
a simulation forced at the inflow with a large amplitude
A of 12 percent foR = 570 andw = 0.1249. After a tran-

From the simulation results of 2D small-amplitude Si€nt region of adjustment, the fundamental wave
disturbances at the test points listed in table 4.1, the®ncounters subcritical growth, which is in agreement

resulting stability or instability of those regions are sum- With the weakly nonlinear theory. Contours of instanta-
marized in table 4.2. neous streamwis&J(+ u) and wall-normal¥ + v) veloc-

ities are shown in figure 4.5. Because the disturbance
amplitude is sufficiently large, notable distortions in the
base flow are observed as a result of the unsteady distur-
Although the theoretical and computational results bance forcing. Figure 4.5 clearly shows a wavelike flow
agree for the growth and decay properties of linear dis-structure in the attachment-line direction. For this flow,
turbances along the attachment line, the nonlinear resultsnstantaneous and mean streamwise and wall-normal

was neglected from the 2D DNS solver is insignificant
for linear computations near the neutral curve.

4.5. Nonlinear Growth of Subcritical Disturbances
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Figure 4.4. Nonlinear subcritical disturbance growthttachment-

line boundary layer @& = 570 andwo = 0.1249.
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Figure 4.5. Contours of streamwideand wall-normaV velocities

for subcritically growing disturbance in attachment-line bound-

ary layer aR =570 andvo = 0.1249.
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Figure 4.6. Streamwise velocity profiles of nonlinear, subcritically
growing disturbance in attachment-line boundary layeR at
570 andw = 0.1249.

velocity profiles at various attachment-line locations are
shown in figures 4.6 and 4.7, respectively. The results in
figure 4.6 indicate that spatially varying distortions at
fixed time to the base flow are observed, but the mean
flow (U + ug), which consists of the base flow and the
mean-flow distortion components, shows no noticeable
deviation from the base-flow solution. However, the
results in figure 4.7 indicate that both the spatially vary-
ing and mean wall-normal profiles undergo distortions
because of the disturbance. To help understand what
effect these mean distortions would have on linear stabil-
ity calculations, figure 4.8 shows the wall-normal com-
ponent of the base flow that correspond&te 570 and

9
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Figure 4.8. Wall-normal component of base flows corresponding
toR=570 and 670.

correspond t&R = 684.2 andv = 0.1249 and are repeated
atR = 684.2 andw = 0.1230 (closer to branch Il of the
neutral curve). For the later test point, the initial ampli-
tudes of the disturbances for each simulation were incre-
mentally increased. The resulting disturbance evolutions
are shown in figures 4.9 and 4.10 (normalized by the ini-
tial amplitude to show the relative growth effects). The
otherwise linearly decaying mode becomes amplified
because of the nonlinear forcing. Interestingly, as the ini-
tial amplitude is increased, the fundamental wave
receives a smaller percentage of the total energy injected
into the flow because other modes receive a larger per-
centage of the energy.

V+ vy

Finally, the nonlinear simulation results of large-
Figure 4.7. Wall-normal velocity profiles of nonlinear, subcriti- amplitude initial disturbances broaden the neutral curve
cally growing disturbance in attachment-line boundary layer at tgward higher frequencies and lower critical Reynolds
R =570 andv = 0.1249. numbers, similar to the influence of nonparallel effects

670. A comparison of these base-flow profiles with the ©" Iinear' digturbance growth. This postulgtion Is
mean flow of figure 4.7 shows that a large-amplitude dis—Skemh.ed in 'f|.gure 4.11, where the nonlinear-influence
turbance produces a distortion to the base flow, whichCUTVe i artificial and serves to show how the now *neu-
causes an effective increase in the base Reynolds numral curve mlghF shift to reflect that certain nonlinear
ber. Evidently, a shift in Reynolds number alone does not™M0des are growing while others are decaying. Note, that

account for the growing mode (based on linear stability :jhis influence IOf sLngls' nonlinear Qisgrbanlcde groth
analysis with the same frequency). oes not resolve the discrepancy in Reynolds number

between linear growth (table 2.1) and bypass (table 2.2)
To determine if nonlinear disturbance growth can be regions.

found above branch Il of the neutral stability curve and to

ensure that the subcritical growth obtained both by Hall At this point it is not clear why the results of Jiménez
and Malik (1986) and by DNS shown in figure 4.4 did et al. (1990) do not agree with either the present DNS
not artificially result from the disturbance forcing at the results or the previous theory and computations of Hall
inflow boundary, the next sequence of simulations is and Malik (1986); however, from the present initial
forced by suction and blowing at decaying modes thatamplitudes required to achieve this subcritical growth,

10
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Figure 4.9. Nonlinear disturban

boundary layer aR = 684.2 ando = 0.1249. Disturbances nor-

malized by initial amplitudes.
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Figure 4.11. Impact of large-amplitude disturbances on region of

disturbance growth.
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Figure 4.10. Nonlinear disturbance growth in attachment-line

boundary layer aR = 684.2 ando = 0.1230. Disturbances nor-

malized by initial amplitudes.

Theofilis (1993b) apparently could not force a distur-
bance with sufficient antipude to realize this nonlinear

growth.

4.6. Effect of Suction and

8 x 106 «
|
)|
|
- L | L | L | L |
0 SB 50 1)(20 150 200

Figure 4.12. Control of linear disturbance growth in attachment-

line boundary layer @& = 684.2 andv = 0.1150 with suction.

documented. The amplification of linear disturbances
influenced by suction and blowing is shown in fig-

ure 4.12 forR = 684.2 andwo = 0.1150. The results indi-
cate that suction stabilizes the disturbance and blowing

Blaving on Disturbance

significantly destabilizes the disturbance. The effects of
suction and blowing on disturbances computed by DNS

Finally, the effect of both steady suction and steady are in agreement with the theory of Hall, Malik, and Poll
blowing on linear and nonlinear disturbance growth is (1984) for small-amplitude disturbances.
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Figure 4.13. Control of nonlinear disturbance growth in Figure 4.15. Control of nonlinear subcritical disturbance growth in
attachment-line boundary layer Bt= 684.2 andw = 0.1249 attachment-line boundary layerRt= 570 andw = 0.1249 with
with suction. suction.

near branch Il of the neutral curve. Larger forcing ampli-

06~ e _'B 05 tudes are required to obtain nonlinear growth with Rey-
e-- _0O1 nolds numbers and frequencies farther away from the
L 0 neutral curve, and, as expected, larger amounts of suction

are required to stabilize these disturbances.

04 - To control the subcritical growth of disturbances,
various levels of suction are employed. Although Hall
and Malik (1986) noted that suction makes the flow more
susceptible to subcritical disturbance growth, figure 4.15
shows that this subcritical disturbance growth shown in
figure 4.4 can be controlled by using small levels of suc-

lul

02
tion. If the 2D DNS results mimic the actual 3D behavior
of the flow, then large-amplitude disturbances generated
" on the attachment line can be controlled with a sufficient

amount of suction.

P | L | L | L |

SB . . .

0 50 100 150 200 5. Attachment-Line Disturbances for Quasi-3D

Assumption

Figure 4.14. Control of nonlinear disturbance growth in
attachment-line boundary layer Rt= 684.2 andw = 0.1230
with suction.

In section 4, an alternate disturbance form was used,
where the velocity component of the disturbance and
the transverse shear of the mean flow were neglected and
the disturbance became 2D along the attachment line.

For the nonlinear subcritical case near branch Il, theThis implied thatw = 0 andow/0Z = 0 on the attach-
effects of steady suction on the disturbance amplitude arament line. Although this simplification was not consis-
shown in figures 4.13 and 4.14 for the largest amplitudetent with the equations of motion, the results of this
disturbances of figures 4.9 and 4.10. The results furthersection (which retain the previously neglected terms)
demonstrate that small amounts of suction can be used tehow that results from the 2D assumption yield similar
stabilize disturbances that otherwise nonlinearly grow qualitative behavior of the computed disturbances.
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5.1. Form of Disturbances ow ow ow
E+(U+u) 57(+(V+v) 5y TV

ow
. oY

In general, disturbances on and near a 3D
attachment-line region are of the 3D nature, requiring oo 13%°w 3w
solutions of the full 3D Navier-Stokes equations. How- +(2W+ww = _0_2 + ﬁ%ﬁ + _ZE (5.5)
ever, as assumed in the original theoretical study by Hall, X" oY
Malik, and Poll (1984) and confirmed in the DNS com- : :

N . i The results for the disturbance described by equa-
putations by S_palart (1989), a single mode in the attaCh'tions (5.2)—(5.5), hereafter referred to as “3D ydist?Jr-
ment-line region of swept Hiemenz flow can take the bances” in the rest of section 5, are shown to qualita-

form tively agree with a 2D solution and the theory of Hall and
Malik (1986) provided the disturbance pressure gradient

u = u(xy,t) C is of a particular form in the flow-acceleration direction.
C
= 5.1
v = vyt E 1) 5.2. Numerical Methods of Solution
W = W(XY,t)xZF

The numerical procedure as described in section 4.2
_ _ _ _ is used for the present system of equations. The distur-
This form permits the velocity componentof the dis-  pances are forced as unsteady inflow conditions. The
turbance to have a linear variation with distance from the profilesu andv that are normalized b_yare generated by
attachment Iine, which is the same as the base flow. (Segome theory (e_g_, quasi-para||e| linear Stabmty theory),
eg. (3.2).) Whereas the amplitude wfvaries linearly and an amplitude is imposed.
with distance from the attachment line, the components
andv remain uniform with distance from the attachment 5.3. 3D Nonlinear Subcritical Disturbances
line. The subsequent computations by Jiménez et al. i ) )
(1990) and Theofilis (1993a, 1993b) used this same dis-  NOt€ that the results in section 4.4 are achieved
turbance form and showed linear results near the neutraf?rough the 2D simplification. In this section, the 3D
curve which were in agreement with the Hall, Malik, and instabilities are determined by solving equations (5.2)—
Poll (1984) theory and nonlinear results that failed to (3-5)- Note, that by using the disturbance form given in

achieve the subcritical growth predicted by the weakly €duations (5.1), th& dependence of the disturbance is
nonlinear theoretical and computational results of Hall 'emoved from the theoretical-computational problem,
and Malik (1986). except for a partial derivative of the pressure in

equation(5.4). In fact, it is from this observation that we
A final series of simulations is performed with the find a difference between the studies of Hall and Malik
linear variance form described by equations (5.1) and(1986) and Jiménez et al. (1990). It is apparent from the
used by Hall and Malik (1986) for their theory and com- manuscripts that different assumptions were made for the
putations and used in subsequent computations bypressure behavior in the flow-acceleration direction.
Jiménez et al. (1990) and Theofilis (1993a, 1993b). This In the studies of Hall, Malik, and Poll (1984) and

dependence of equations (5.1) requires solutions of theya and Malik (1986), the disturbance pressure was a

following momentum and continuity equations: function of (X,Y) only: this leads to
ou , ov _ op _
x oy tW =S 0 (5.2) 3 0xZ (5.6)

in equation (5.4). With this pressure form, a series of

u +(U +u) ou +(V +V) du +v oy simulations was conducted by solving equations (5.2)—
ot oX oY oy (5.5). Figure 5.1 shows the fundamental mode and first
3 1% 92u0 harmonic of the atta'chment-line' direction velocit.y com-
=_9, —@ + =[] (5.3) ponent compared with the previous 2D mode (fig. 4.2).
0X Ry ay20 In agreement with the 2D qualitative behavior, the 3D
mode undergoes subcritical growth. Quantitative differ-
av vV ences are apparent and expected due to the addition of

v Y equation (5.4) and the modified continuity equation. The

energy content with distance along the attachment line is

_ 9p . 1% . Py probably.a better measure .of tptal disturbance growth or

TaY " Reo2 —U (5.4) decay. Figure 5.2 shows this disturbance energy for vari-
Cox” oyl ous subcritical Reynolds numbers. For a fixed initial

ov ov
a+(U+U)5(+(V+V)(W+
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. ! Figure 5.3. Nonlinear subcritical energy of 3D disturbances in
800 attachment-line boundary layerRt 570 ando = 0.1249.

Figure 5.1. Nonlinear subcritical growth of 2D and 3D distur- the base flow. Namely, pressure varied with the square
bances in attachment-line boundary layerRat= 570 and of distance from the attachment line in the flow-
w=0.1249. . L . .

acceleration direction. They arrived at a pressure gradi-
ent in the flow-acceleration direction which took the
form

op _

7 1xZ (5.7)
Using this pressure form, a final simulation was con-
ducted and the results are presented in figure 5.3 with the
results from equation (5.6) as the flow-acceleration pres-
sure gradient. This simple difference in pressure leads to
a decaying mode instead of nonlinear subcritical growth.
Hence, the discrepancy between the Jiménez et al. (1990)
computations and the computations and weakly nonlin-
ear theory of Hall and Malik (1986) lie with an effective
pressure source difference.

250 This discrepancy presented in figure 5.3 leads to an
additional puzzling question: Which pressure form
should be used for future simulations? The correct pres-
sure form for the disturbances studied by Hall and Malik
(1986) and Jiménez et al. (1990) is demonstrated in sec-
tion 6 by looking at the pressure solution of a fully 3D
simulation.

disturbance amplitude, it is clear that the disturbance

energy increases with distance along the attachment line6. Attachment-Line Disturbances for Full 3D

in agreement with the theory and computations of Hall Modes

and Malik (1986) and with the earlier 2D modal approxi-

mation. These results support the conjecture shown in g1 Form of Disturbances

figure4.11; namely, for a fixed large initial amplitude, ) ) ) o

there are distinct regions of disturbance growth and In this section, the disturbances are forcibly imposed

decay which can be described by “neutral curves.” in_to the boundary layer by u_nsteady suction and blowing
with the wall-normal velocity component through the

In the study of Jiménez et al. (1990), the disturbancewall (harmonic-source generators). An equal amount of
pressure was assumed to be of the same form as that ohass injected by blowing is extracted by suction so that

Figure 5.2. Nonlinear subcritical energy of 3D disturbances in
attachment-line boundary layer with Reynolds number at
w=0.1249.

14



zero net mass is added to the boundary layer. A similardecomposing the operataig andL, into their respec-
technigue has been used by (among others) Danabasogltiye eigenvalues and eigenvectors, we find
Biringen, and Street (1991) in their study of periodic

control by suction and blowing. Although the distur- L. = OA Q—l[

bances may be generated by random frequency input, the y "~ y E 6.2)
disturbances of interest here are forced with known fre- L =spnst '
guencies. Essentially, this disturbance generator is an z z C

alteration to the no-slip boundary conditions which are

conventionally used for the wall condition in a viscous whereQ andS are the eigenvectors &f, andL,, Q1

flow problem. andS™! are inverse matrices @ andsS, and/\y andA,

are the eigenvalues of, andL ,. The solution procedure
reduces to the following sequence of operations to deter-

6.2. Numerical Methods of Solution mine the pressure

In the attachment-lineX) direction, fourth-order
central finite differences are used for the pressure equap* = (I O Q‘l 0 s‘l)ﬁs E
tion and sixth-order compact differences are used for the + 1 .LC
momentum equations in the interior of the computational P’ = (L, O 101+ OA O1+1010A) “p [6.3)
domain. At the boundary and near-boundary nodes, t E
fourth-order forward and backward differences are used.P = (10 QU S)p C
The discretization yields a pentadiagonal system for the
finite-difference scheme and a tridiagonal system for the Because the number of grid points in the attachment-line
compact-difference scheme. The approximations can belirection is typically an order of magnitude larger than
solved efficiently by appropriate backward and forward the wall-normal and flow-acceleration directions, the
substitutions. operatorlL, is much larger than both, andL ,. Because

L, is large and has a sparse pentadiagonal structure and

In both the wall-normalY) and flow-acceleration —becausel\, and A, influence the diagonal only, an LU
(2) directions, the Chebyshev series is used to approxi-decomposition is performed for the second stage of equa-
mate the disturbances at Gauss-Lobatto collocationtions (6.3) once, and forward and backward solves are
points. In particular, the use of the Chebyshev seriesperformed for each time step of the simulation. The first
enables an efficient pressure solver. Because this seriegnd third steps of the pressure solver in equations (6.3)
and its associated spectral operators are definedlohl[  involve matrix multiplications.

and the physical problem of interest has a truncated T gptain the attachment-line-directed operdtgr

domain [O¥mad and FZmaxZmad: transformations are  cantral finite differences are used. To find the wall-

employed. Furthermore, stretching functions are used t05ma( . and flow-acceleratiori, operators, the fol-
cluster the grid near both the wall and the attachmentbwing m)étrix operations are required:

line.
. . . _ G ~ = GLLC
The same time-marching scheme and inflow and Ly = 1g DDyl €
outflow boundary conditions as described in section 4.2 G ~ 6L L (6.4)
are used in the 3D DNS code. L, =15 .DDig E

To efficiently solve the resulting Poisson problem, \where D, is a spectral wall-normal derivative operator
the tensor-product method of Lynch, Rice, and Thomasfor the stretched gridD, is the spectral derivative opera-
(1964) is used. The discretized form of the Poisson equator that is grid clustered in the attachment-line region,
tion for the pressure is andDy andD, are the derivative operators with the first

and last rows set to 0. The interpolation mal@ﬁ oper-

(LyO1OI+ oL O+ 010L)p = RHS (6.1) ates on variables at Gauss-Lobatto points and transforms
them to Gauss points; the interpolation mat@l‘ per-

forms the inverse operation. The spectral operators are

the equationRHS results from the time-splitting proce- dS?scr;beddwE:r(]jetan fggganuto et al. (1988) and Joslin,
dure;l is the identity matrixL, is the attachment-line- reet, an ang ( )-

directed central finite-difference operatbr; andL, are The operator§ L ,L,,L_}, the eigenvalllje ma}rices
the wall-normal-directed and flow-acceleration-directed {A,A}, the eigenvector matrice§Q,Q ~,S,S 7},
spectral operators; arid denotes a tensor product. By and the influence matrix are all mesh-dependent matrices

wherep is the desired pressure solution; the right side of
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and must be calculated only once. The wall-normal
direction spectral operators aRHS  are given in Joslin,
Street, and Chang (1993); the same form is used for the
flow-acceleration direction.

15 Subcritical growth region of
Both at the wall and in the far field, homogeneous | /Ha” & Malik 1986

Dirichlet conditions are imposed. Homogeneous i VNP Stable
Dirichlet and Neumann conditions have been used in the = =

flow-accelerated direction. With either condition, the dis- ¢, ;51
turbance will develop in the same manner along the
attachment line, provided that the boundaries are suffi-
ciently far from the attachment-line region. The base

flow is used for the inflow boundary condition. 5L
x  DNStest points
6.3. Quasi-2D Symmetric Disturbances MRS Ic-i)gll, Malik, & Poll 1984
The spatial evolution of three-dimensional distur- oLb—— 1 .
bances is computed by direct numerical simulation, 4 6 4 10 12 14 16x10

which involves the solution to the unsteady, nonlinear,
t_hree'd'mens'onal Nawer-Stles equathns. The_s'mUIa'Figure 6.1. Neutral curves, region of subcritical disturbance
tions are performed on a grid of 661 poirt8{ points growth, and computational test points for DNS in attachment-
per wavelength) along the attachment line, 81 points in |ine boundary layer.
the wall-normal direction, and 25 points in the flow-
acceleration direction. The far-field boundary is located
at 505 from the wall, the computational length along the ~~ The nonparallel theory of Hall, Malik, and Poll
attachment line is 21656 and the flow-acceleration (1984) outlined the stable and unstable regions for infini-
boundaries are locatetll005 from the attachment line. tesimal disturbances. In a segment of the subcritical
For the time-marching scheme, the disturbance wave-€gion, large-amplitude disturbances were found by Hall
|ength was divided into 320 time Steps per period_ Theand Malik (1986) to exhibit nonlinear amplification. The
total Cray Y-MP computer time for a simulation with a results for two-dimensional, spatial direct numerical sim-
sing|e processor was approximate|y 25 hr. As shown inUlation in section 4 confirmed this subcritical grOWth
figure 6.1, the parameter regions of interest consist of aPhenomenon. In this sectioR,= 570 andw = 0.1249,
region of linear disturbance growth’ a region of linear parameters in the subcritical region, are used in the StUdy
disturbance decay (WhICh is the region of non”near’ SUb'Of the evolution of small—amplitude three-dimensional
critical disturbance growth identified by Hall and Malik disturbances. The results are compared with linear stabil-
(1986)), the upper and lower branches of the neutrality theory and previous two-dimensional results.
curve, and the critical region predicted by the nonparallel
theory of Hall, Malik, and Poll (1984). To compare with the two-dimensional theory and
previous simulations, a quasi-two-dimensional distur-
This study begins by validating the simulation bance is initiated in the three-dimensional flow. At best,
results for infinitesimal disturbances with hydrodynamic this disturbance is an approximation to a true two-
stability theory with the special case of a frozen basedimensional disturbance mode. To generate this two-
flow. Nonparallel terms (i.e., the wall-normal base flow dimensional disturbance, a harmonic source is used that
components) for the equations are included in the simuladis elongated —44.2< Z < 44.2) in the flow-acceleration
tion, and the instabilities are compared with the frozen- direction. This disturbance-forcing method is compara-
flow disturbance properties. Next, aspects of disturbanceble with using a vibrating ribbon to generate two-
development on and near the attachment line are comdimensional disturbances for wind-tunnel experiments.
pared for quasi-two-dimensional and point-source har- The qualitative features of a disturbance generated by the
monic source generators with the theory of Hall, Malik, harmonic source with a small amplitude (eAy5 0.001
and Poll (1984). The effects of suction on the instabilities percent) are shown in figure 6.2. The disturbance evolu-
are documented. Conclusions are drawn and the importion is viewed from above and along the attachment line.
tance of this study on the global problem of attachment-The wave travels along the attachment line without sig-
line instability is ascertained. Finally, future directions nificant three-dimensional features. However, because
for continuing the study of the problem of instabilities in the base flow is accelerating away from the attachment
attachment-line boundary layers are suggested. line (in the +Z -directions), wave spreading occurs with
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Figure 6.2. Three-dimensional traveling wave in attachment-line ir T " i s
boundary layer foR = 570 andv = 0.1249. P '.'
distance from the harmonic source, and the rate of u o} |
spreading increases with distance along the attachment 1 B!
line. L 3 Ld oo 00 09 99 § !
Quasi-two-dimensional simulation results for both a 1 L b - 'b
guasi-parallel base flow (i.eV, = 0) and the full swept ! W ¥ i b i '
Hiemenz flow are compared with linear stability theory, : l i i | _
and the results are shown in figure 6.3. The amplitude, ' Bll‘ffer doma;”
decay rate, and wavelength of disturbances simulated olad
with the quasi-parallel flow are in very good quantitative 0SB 50 100 150 200 250
agreement with the results of two-dimensional linear X
stability theory. This agreement suggests that in this : ) : .
parameter region the elongated harmonic source can (b) Three-dimensional attachment-line basic flow.

approximate a two-dimensional disturbance along theFigure 6.3. Simulated two-dimensional disturbance evolution for
attachment line. Figure 6.3 also shows that the full swept R=570 andw = 0.1249.
Hiemenz base flow destabilizes disturbances due to the
inclusion of the velocity compone¥t This destabilizing . . . .
feature is consistent with the results reported in thef:;[tizr;?zgt Iwr?ér-gh;arr?e\lll?lgg\?igt?oag;e;nrz %rgsgjr?/ggcﬂrﬁgt
two-dimensional nonparallel studies by Hall, Malik, and S o .
Poll (1984). observqtlon mphgs that thg eIongated harmonic source is
generating primarily two-dimensional waves and that the
To further demonstrate the two-dimensional nature attachment-line velocity component is dominant (i.e., the
of the disturbance generated with the elongated harmoni@mplitude of the velocity componentof the disturbance
source, figure 6.4 shows the attachment-line results comis too small to modify the dominant componet Fig-
pared with results at distances ofd1l@nd 3% off the ure 6.5 shows velocity profiles farandw atZ = 13 and
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(
|
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355. Although only small differences are found with !
velocity components, the velocity components are in !
strong disagreement. This disagreement results from the Y K

variation of that component with distance from the
attachment line. Note that the velocityis an order of
magnitude smaller than the velocitythis is the reason

for the good agreement between the veloaitgn the
attachment line with the same components off the attach-
ment line. Furthermore, although no symmetry assump-
tion is made, flow symmetry about the attachment line is
realized with this particular harmonic-source generator.

In figures 6.6 and 6.7, three-dimensional simulation
results on the attachment line are compared with previ_Figure 6.5. Three-dimensional disturbance velocity profiles at
ous two-dimensional simulation results in section 4.3, X =100 near attachment line f&r= 570 ando = 0.1249.
Figure 6.6 clearly shows a significant amplitude disparity

between the two- and three-dimensional results. Becaus%ompared profiles agree well. The results demonstrate

the three-dimensional simulations contain - a flow- 4t two-dimensional simulations capture the qualitative
acceleration velocity componew an additional degree  toatres of the true three-dimensional flow; in addition,

of freedom is avail_able to disperse (or absorb) energy.pecause a third degree of freedamz] is not present in
Hence, the harmonic-source generator forces less energie yo-dimensional simulations, amplitude information
into the attachment-line velocity componentThe nor- s oyerpredicted and growth-rate information is under-
malized two-dimensional and three-dimensional results predicted. These results suggest that much larger distur-

are also shown in figure 6.6 to enable a growth-ratep,nces are required to generate subcritical disturbance
comparison. The disturbance is slightly more destabi-growih in the three-dimensional flow (if subcritical
lized in the full three-dimensional flow than in the two- growth is possible in the three-dimensional flow).

dimensional flow approximation. Similar qualitative dif-

ferences are evident when disturbance growth rates in  In the nonparallel theory of Hall, Malik, and Poll
guasi-parallel flow are compared with those in nonparal- (1984), thez-dependent form for the flow-accelerated
lel flows. Finally, the disturbance velocity profiles at velocity componenwv was a key assumption, which led
X =100 are presented in figure 6.7. The shapes of theto a system of ordinary differential equations rather than

18



1.0
---- 3D
—— 2D
Q@ ® > o )
5| I
O
od 9 | ¢ o} ¢ ¢ 0} 10,
L 0} O} o "A'
) 5
il | N noo r A 0 R %
b1 1 A I ) I i /|| Ay
u (0] ¢ 8,4
[ [ [ | )
‘\ /I \\’ \\’ \\' ‘/ \» \‘ | . Ko ©
- D )]
o P o 1 [0) 0} [0) o) ® ®
-5 ¢ TR
& ©
) U}
V)
i ® Buffer domain
f—
1.0 L 1 . 1 . 1 . 1 . ]
0SB 50 100 150 200 250
X
15
---- 3D
i —— 2D
10F ! g
l R N & 1 n
- L A
O, | n
5 - od @ ) (0) 0) ) () [0) |' ‘n
()
o) ) o 5 ! ”Aﬂ
- ) d ,\ Y
e O ¢ O
u (0] g A
u v @y
max | ! s é d v 5
D )]
- 5 — & 0) P () \ ® ® o ) ® ¢
i T s & v ‘
®
10} & ©
. Buffer domain
= -
15l | . | . | . | . ]
0SB 50 100 150 200 250
X Figure 6.7. Two- and three-dimensional disturbance velocity pro-

files atX = 100 normalized by componentin attachment-line

Figure 6.6. Two- and three-dimensional disturbance evolutions in boundary layer foR = 570 ando = 0.1249.

three-dimensional attachment-line boundary layerRer 570
andw = 0.1249.
top view of the flow in figure 6.9. Similar difficulties in
] ] ) ] ) . disturbance initialization can be found in the experi-
partial differential equations. This assumed form is ments; however, the core of the test region (i.e., the

equivalent to the base-flow foriV . W,Z. Figure 6.8 aitachment line) is not significantly contaminated by
shows the maximum amplitudes of the flow-acceleratedinese end effects.

velocity component aX = 100 and away from the

attachment line. For the present harmonic source, this We address the question in section 5.3 with respect
z-dependent disturbance form assumed by Hall, Malik, to the pressure forms used by Hall and Malik (1986) and
and Poll (1984) is realized in the simulation near the Jiménez et al. (1990) by comparing with the pressure
attachment line; however, because the harmonic sourcérom the present 3D simulation; this comparison will
has a finite length, the disturbance behavior near theprovide confirmation of either subcritical growth or
harmonic-source ends deviates from the expeaed decay. At an arbitrary distance downstream of the source,
dependence. The harmonic-source ends cause a perturbtie pressure is shown in figure 6.10, where the maximum
tion to the flow that is shown both in figure 6.8 and in a pressure is shown as a function of distance from the
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Figure 6.10. Maximum pressure with flow-acceleration direction
at X = 100 in attachment-line boundary layerRat 570 and
w=0.1249.

attachment line. The results clearly show that the pres-
sure is uniform for this type of disturbance, except at the
regions where forcing is discontinued (which is
expected). This uniformity supports the pressure form of
Hall and Malik (1986) and thus supports the develop-
ment of nonlinear subcritical growing disturbances.

6.4. Neutral-Curve Region

In parameter regimes near the neutral curve, finite
Reynolds number disturbance modes are studied near the
upper branch, the lower branch, and the critical point.
Specifically, the simulations are conducted (in the
regions shown in fig. 6.1) to verify the nonparallel theory
of Hall, Malik, and Poll (1984).

For the upper branch, three simulations are per-
formed to identify the neutral curve. The harmonic-
source disturbance generator is used to generate the
guasi-two-dimensional modes on the attachment line.
For the Reynolds numbeR = 684.2, the three-
dimensional simulation results are shown in figure 6.11
for various frequencies. The upper branch of the neutral
curve is shown at the frequenay= 0.1263; the nonpar-
allel theory of Hall, Malik, and Poll (1984) and the two-
dimensional simulations (fig. 4.3) report that the upper
branch is betweewm = 0.1230 and 0.1240. Although the
two- and three-dimensional results yield different upper
branch locations, the relative error, or difference, in the
locations is only about 2 percent. This difference may be
attributed to the assumption that a two-dimensional
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Figure 6.11. Disturbance growth and decay near branch Il of curveFigure 6.12. Disturbance growth and decay near critical point of
of neutral stability for attachment-line boundary layer at  curve of neutral stability for attachment-line boundary layer at
R=684.2. w=0.1104.

disturbance is generated from a three-dimensional har- < 10-6
monic source or that the three-dimensional base flow 10~
does not support pure two-dimensional disturbances.

Near the critical-point region of the neutral curve,
computations are made to verify the critical point pre- 9
dicted by the nonparallel theory. Digitized data from the
results of Hall, Malik, and Poll (1984) indicate that
R =580 andw = 0.1104 is the point farthest upstream at
which an infinitesimal, two-dimensional disturbance |, g
becomes unstable. Although this value is not the exact
critical point, this Reynolds number—frequency combina-
tion lies on the neutral curve in the region of the critical
point. The computational results for disturbances in this 7
critical-point region are shown in figure 6.12. The three-
dimensional results suggest that for the frequency of L
w=0.1104, the Reynolds number for neutral stability is
slightly greater thaR = 585; this represents a difference 6 —<5 I - I : ' ;
of less than 1 percent between the nonparallel theory and 0 ¢ 50 75 100 125 150 175
the simulation results. X

Finally, figure 6.13 shows results from simulations Figure 6.13. Disturbance growth and decay near branch | of curve
performed in the vicinity of the lower branch of the neu- of neutral stability for attachment-line boundary layer at

tral curve. The results indicate that for R = 684.2, the R=684.2
lower branch of the neutral curve is approximately at
w = 0.082, which agrees with nonparallel theory. 6.5. Three-Dimensional Disturbances

For practical engineering purposes, the nonparallel To generate three-dimensional disturbances, the
theory of Hall, Malik, and Poll (1984) agrees with the flow-acceleration length of the harmonic-source genera-
three-dimensional simulation results in the limit of infin- tor is reduced to enable a more direct transfer of energy
itesimal quasi-two-dimensional disturbances that propa-to the velocity componeniv. Disturbances computed
gate along the attachment line. in the parameter regime describeg B = 570 and
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dimensional disturbance. However, by reducing the

Figure 6.14. Evolution of disturbances in attachment-line bound- harmo,n!c'source length tel3.4<Z < 134 (Onejth”,d .
ary layer atR = 570 andw = 0.1249, where disturbances are the original length), the generated disturbance is signifi-

generated with harmonic sources of various lengths.

x 107
8 Harmonic source length
o 278<Z<0
6
|u] e—o—"°
4
2 aa 1 L 1 L 1
0 SB 50 100 150 200
X

T

Figure 6.15. Evolution of disturbance velocityon attachment

cantly stabilized on the attachment line. The evolution no
longer represents a quasi-two-dimensional disturbance
and becomes more comparable with a harmonic point
source. Thus we conclude that the two-dimensional
instabilities are apparently dominant on the attachment
line.

Next, a harmonic-source generator is used to intro-
duce a disturbance off the attachment line to determine
the direction and rate of disturbance growth or decay.
The results of a disturbance generated with a harmonic
source located at-27.8<Z<0.0 are shown in
figure 6.15. The top view indicates that the harmonic
source generates a local almost circular pattern that
evolves along the attachment line with spreading both
away from and toward the attachment line. These results
suggest that the flow-accelerated shear away from the
attachment line has insufficient strength to deter the
spreading of the disturbance toward the attachment line.
Figure 6.15 also shows that the maximum-amplitude
velocity u on the attachment line initially undergoes a
slight decay and then continues to grow. The amplitude
information along the attachment line suggests that an
unstable mode is observed in the simulations; however,
the top view of the flow field indicates that this amplifi-
cation is caused by the wave-spreading phenomenon.
The combined amplitude and visual results imply that a

line and top view of three-dimensional traveling wave in disturbance generated off (but near) the attachment line

attachment-line boundary layerRit 570 andwo = 0.1249.

w=0.1249 are shen in figure 6.14. By reducing the
length of the original harmonic source from
—44.2<7Z<44.2 to —20.4<Z<20.4, the generated

can supply energy to the attachment region by the
spreading of the wave pattern. In turn, this energy supply
may feed an unstable mode on the attachment line.

Similar to the pressure comparison in figure 6.10, the
pressure for the disturbance near but off the attachment

disturbance is very similar to the previous quasi-two- line is plotted in figure 6.16. Clearly, a zero pressure
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gradient in the flow-acceleration direction does not occur along and away from the attachment line, the location of
for a 3D harmonic wave packet. The difference in pres-the maximum velocity is no longer @t= -20.4. This
sure form suggests that for 3D disturbances subcriticalresults in an observed decay at the locaion —20.4.
growth is not assured based on 2D simulation results andrigure 6.19 shows velocity profiles at various locations
that a full 3D nonlinear study would be warranted. of Zat X = 100. As energy is transferred because of this
spreading, the profiles near the attachment line undergo a

_';Oﬁf;%f":al smglitlon In tht'; serz]ct:]olﬁ,: ?I8I4tﬁ anrd ; gistortion near the wall. This distortion leads to multiple
@ =19.1150 are used because ne nonparallel IN€ory Preg, 5y ms and profile shapes that deviate from the linear
dicts that infinitesimal two-dimensional disturbances are

. . i heory.
unstable on the attachment line. The disturbance is genE eory

erated with a harmonic source which is positioned at
-35.6<Z<-6.6 (i.e., completely off the attachment
line). The top view of the computed disturbance is shown Recently, Lin and Malik (1994, 1995) have shown
in figure 6.17. As before, the disturbance evolves prima-with theory that both symmetric and asymmetric instabil-
rily along the attachment line, and the wave spreads botlties are present in incompressible and compressible
away from and toward the attachment line. Streamlinesswept Hiemenz flow. In this section, the 3D DNS is used
and vortex lines (determined by computing the trace ofto validate the theoretical prediction of asymmetric
velocity and vorticity vectors) are overlaid on the distur- modes.

bance pattern. 'I_'hese lines _yleld valuable |nformat|on_ ON  The solutions posed by Lin and Malik (1994) took
the mean flow field properties near the attachment Ilne.the form

The disturbance packet follows the streamlines, and the
packet spreads and evolves near the attachment line in a _ i(aX-ot)

manner similar to packets in flat-plate boundary-layer {uvwh(X,Y,2,0) = {uv,w}(Y.2) e (6.5
flows. These results and the quasi-two-dimensional Supstituting this form into the Navier-Stokes equations
results suggest that the behavior of instabilities in theleads to a system of partial differential equations in the
region on and near the attachment line can be expected tflow-acceleration and wall-normal directions. The
be qualitatively similar to flat-plate boundary-layer insta- poundary conditions for the boundariggook the fol-
bilities. Supporting this postulation, the trace of velocity |owing forms:

vectors in the wall-normal—flow-acceleration plane are

6.6. Asymmetric Disturbances

shown at the top of figure 6.17. The resulting pattern in a SYMmetric:
reference frame moving with the disturbance velocity is ou v
reminiscent of Kelvin cat’s eyes, which are observed in 7 a7 W=0 (2=0) (6.6)

the two-dimensional flat-plate boundary-layer flow.

The amplitudes of the disturbance at varidusca- {u,v}(Y,2) = {uv}(Y,-2)O :
tions are shown in figure 6.18. The componerff the w(Y,Zz) = -w{ Y,~Z} E (2=2Zpna) (67)
disturbance has a peak amplitude initiated at—-20.4
and undergoes a strong decay along the attachment ”n‘%t\symmetric:
although the mode is shown to be unstable on the attach-
ment line. The spread of the disturbance toward the U=v= ow
attachment line indicates that the disturbance on the
attachment line is either unstable or merely gaining
energy at a rate comparable with the spreading rate.fy v} (y,z) = {u,v}(Y,-Z) O
However, because the theory for two-dimensional distur-
bances indicates that the disturbance is unstable on th

attachment line, some combination of energy transfer . .
due to spreading and linear growth is likely. However, For the theory, Lin a.”d |_\/|ahk (1996) showed that as long
s Z_..22, domain independent convergence was

the more stable three-dimensional modes may rob the?S “max=

two-dimensional mode of enough energy to prevent flow achieved.

transition along the attachment line. Note that the veloc- For the simulations, the entire attachment-line region
ity componentsl at all Z locations indicate growth with  is included within the domain, and therefore, the bound-
distance along the attachment line, except for the loca-ary conditions aZ = 0 are not needed. Although the
tion Z = -20.4, where decay is indicated. Spreading boundary conditions atZ .. were used to validate the
causes the other locatiorig to receive energy, but theory, it was demonstrated that simple Dirichlet condi-
because the locatiah= —-20.4 was the location of maxi- tions are sufficient for boundary conditions provided

mum initial amplitude and the disturbance propagates+Z .. is far-removed from the disturbance field.

=5 =0 (Z=0) (6.8)

(z=2

W(Y.Z) = w{Y,-Z} 5 max)  (6:9)
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Figure 6.17. Top view of disturbance evolution in attachment-line boundary ldger 884.2 andv = 0.1150, where disturbance is gener-
ated with harmonic source near attachment line.

The theory suggests that the most unstable modesecently confirmed by A. Fedorov, of Moscow Institute
follow the sequence: symmetric (S1), asymmetric (Al), of Physics and Technology, using an asymptotic theory.
symmetric (S2), et cetera, where the growth rates ofAlthough according to the Fedorov analysis, the valida-
modes areS1> Al> S2> A2> S3.., without excep-  tion of a single mode implies the validation of all modes,
tion. This theory and modal growth ordering were here the first two dominant modes are simulated.
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Figure 6.18. Evolution of disturbance generated off attachment
line in attachment-line boundary layer B = 684.2 and
w=0.1150. Harmonic source generated-835.6< Z < —6.6.

Figure 6.19. Three-dimensional disturbance velocity profiles at
X'=100 near attachment line fBr= 684.2 ando = 0.1150.
From the results of the Lin-Malik technique, the
wave number and growth rate for the first three modes at
R =700 andw = 0.1017 are shown in table 6.1. The sim- Taple 6.1. Symmetric and Asymmetric Modes for Swept Hiemenz

ulation of a pure mode will prove difficult because the Flow atR = 700 andw = 0.1017
discrimination of the wave numbers would be difficult.

The theoretical results suggest that the previous simulaf Mode o, a;

tions of “discrete modes” are in fact spectrally rich. To s1 0.27481152 0.226959% 102
use suction and blowing to generate the S1 mode in the Al 027515243 0.105988¢ 10

absence of the S2 mode would prove difficult. However, s2 0.27548905 | +0.148157 10°
a discriminating factor can be attributed to the phase rela-
tion between the symmetric versus asymmetric modes

across the attachment line and in the flow-acceleration ~ The simulations are performed on a grid of
direction. This difference is obvious from the boundary 661 points €60 points per wavelength) along the attach-
conditions forZ = 0 in equations (6.6) and (6.8). Hence, ment line, 81 points in the wall-normal direction, and
simulations could discriminate between symmetric and 25 points in the flow-acceleration direction. The far-
asymmetric modes. field boundary is located at d0from the wall, the
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Figure 6.20. Attachment-line symmetric disturbance (S1) growth
and Lin and Malik (1994) theory for three-dimensional
attachment-line basic flow f&® = 700 andw = 0.1017.
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Figure 6.21. Flow-acceleration asymmetric disturbance (Al)
growth and Lin and Malik (1994) theory for three-dimensional
attachment-line basic flow fd&® = 700 ando = 0.1017.

computational legth along the attachment line is 216
and the flow-acceleration boundaries are locatsg0d.

The total Cray C-90 computer cost for this simulation is
13 hr for 8 periods in time. Separately, the symmetric
(S1) and the asymmetric mode (Al) are forced by using
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Figure 6.22. Effect of suction and blowing on growing quasi-2D
symmetric disturbance in attachment-line boundary layer at
R=684.2 ando = 0.1230.

three-dimensional disturbances. The phase of the Al
mode in the flow-acceleration direction was determined
with the Lin-Malik technique. Although the boundary
conditions attZ . were used to validate the theory, it
was demonstrated that simple Dirichlet conditions are
sufficient for boundary conditions providetZ .. is

far-removed from the disturbance field.

In figures 6.20 and 6.21, the simulation results are
compared with the wave growth rate described by the
theory (listed in table 6.1). The agreement is remarkably
good when considering the differences between the DNS
and assumed solution form in equation (6.5). For the the-
ory, the A1 mode has a constant wave number and
growth rate in the flow-acceleration direction, whereas
the simulations have a truly three-dimensional distur-
bance, and therefore, spectral differences in the
Z-direction are inevitable in this 3D flow. To make the
comparison shown in figure 6.20, the results for the sim-
ulation are averaged over the flow-acceleration stations:
Z =0 and+6. These stations were selected because, as
figure 6.17 shows, the streamlines very near the attach-
ment line are essentially aligned with the 2D attachment-
line flow. The stationZ = +6 permit a cancellation of
any opposing flow-acceleration effects.

6.7. Effects of Suction and Blowing on Distur-
bance Growth

By changing the handary conditions in equa-

suction and blowing as before with the symmetric and tion (3.1) fromk = 0, steady suctiofk < 0) or blowing
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this agrees with the theoretical results by Hall, Malik,

5
1.25 107 K and Poll (1984) and the two-dimensional simulation
_____ —0.05 results in figure 4.12.
;\‘ """"" —10 The results for the three-dimensional disturbance
100~ Jg z generated with a harmonic source of length
A: \‘;x@\ ©c 0 -35.6<Z <—6.6 atR = 684.2 andv = 0.1150 indicated
,1;: N A 134 growth in the energy on the attachment line (fig. 6.18).
751 z‘;} §§>\ & -204 Because two-dimensional disturbances at this Reynolds
' $ﬁ{ ‘\g\\ * o =2ra number and frequency are linearly unstable on the attach-
u P N ment line, the presence of energy should lead to distur-
; % _,*_/_'__;Zi:%{\‘ S bance growth. Computations with suction are used to
S0y :*/ kL SR~ evaluate disturbance stabilization on and near the attach-
i/\/ \é\\g: __jg—ﬂ«%%\ ment line. Clearly, figure 6.23 shows that suction stabi-
Ben 7 lizes the disturbances located both on and off the
25— F’ A attachment line.
)
/}@/\@%}u—@-—-» - B-8-§" 6.8. Region of Subcritical Disturbance Growth
20 | | | | | | The weakly nonlinear theory and Fourier-based sim-
0 25 50 75 100 125 150 175 ulations by Hall and Malik (1986) and the results of sec-
X tion 5.3 reveal that a region of nonlinear subcritical
75 x 1076 « growth exists for large-amplitude disturbances that
evolve on the attachment line of a three-dimensional
- _?'(1)3 boundary-layer flow. Because the 3D results shown in
- ' figure 6.6 indicate that much larger harmonic-source
IX?‘ o OZ amplitudes are required to initiate large-amplitude distur-
Ky bances and because of the large computational costs
50— ‘ A 34 involved to resolve this nonlinear phenomenon, three-
‘Q\\é\ i _3(7)"71' dimensional simulations of large-amplitude instabilities
| Ny Y - were not attempted in this paper.
w . %T\\A\
, 35\\&‘:?\&\& 7. Concluding Remarks
25 R e In this study, results are presented for the spatial
\ el UK ’,a;;é, direct numerical simulations (DNS) of the two-
L /@‘*ﬁ— % —— dimensional (2D) and three-dimensional (3D) distur-
&< \g\ - bances that propagate along the attachment line of a
AL | | | | | ) | : | swept _Hiemenz flow. With a quasi—p{irallel base-flow
0 25 50 75 100 125 150 175 approximation, the small-amplitude disturbances were

X

shown to grow and decay in agreement with linear stabil-
ity theory. The true swept Hiemenz base flow leads to a

Figure 6.23. Effect of suction on evolution of disturbance gener- destabilization of the flow, which agrees with the non-
ated off attachment line in attachment-line boundary layer at parallel theory of Hall, Malik, and Poll. Furthermore, the

R3:56§4-22 anedé) = 0.1150. Harmonic source generated at effect of steady suction and blowing on snatiplitude
—392.6< /£ <-0b.6.

(k >0) can be used to alter the growth or decay of dis-

disturbances was documented with direct numerical sim-
ulation (DNS). In agreement with the results of Hall,

Malik, and Poll, suction stabilizes and blowing destabi-
lizes the small-amplitude disturbances.

turbances in the attachment-line boundary-layer flow.
Near the upper branch of the neutral cuRe,684.2 and A computational approach was described, which
w = 0.1230 are used for the simple test case of linear stapermits simulations of disturbances that evolve in flows
bility with suction and blowing. Shown in figure 6.22, where the periodic assumption is invalid. Small-

the results of the quasi-two-dimensional disturbance gmplitude quasi-two-dimensional disturbances, com-
generated with the elongated harmonic sourceputed in a quasi-parallel base flow, were shown to grow
(—44.2<Z<44.2) indicate that suction stabilizes the and decay in agreement with two-dimensional linear sta-
disturbance and blOWIng destabilizes the diSthbaﬂce;bi”ty theory. For complete swept Hiemenz flow, the flow
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is destabilized in comparison with those from both linear ing disturbances. No nonlinear growing disturbances
stability theory and two-dimensional simulation results. were detected near branch | of the neutral curve; how-

] ] ever, nonlinear neutral-like states were found near
The neutral-curve location predicted by the nonpar- pranch I.

allel theory of Hall, Malik, and Poll agreed well with the
three-dimensional simulation results in the limit of infin- Finally, the simulation results of 3D symmetric and
itesimal  quasi-two-dimensional disturbances, which asymmetric disturbances were shown to be in agreement

propagate along the attachment line. Furthermore, theyith the 2D-eigenvalue calculations of Lin and Malik
effects of both steady suction and blowing on small- and theory of Fedorov.

amplitude disturbances were documented with direct
numerical simulation. In agreement with the results of Although the present study has served to resolve the
Hall, Malik, and Poll, suction damps smaliplitude previous discrepancy surrounding the subcritical grow-
disturbances, and blowing amplifies these disturbances. ing disturbances, the results have not explained the phys-
. . . ... ics of the flow between the known limit of linear
For the parameter regions studied here, mstabllltlesinstabi”ty R, 0245 and the bypass (or turbulence) limit

that are generated from harmonic sources located off thebf R, 0100, The present nonlinear results suggest that
attachment line spread both toward and away from they, o |jhear critical Reynolds can be slightly reduced due

attachment line. Because of this spreading, energy fromy, o iinear effects: however, the true swept-wing
the initial disturbance is transferred to the attachment—byloass problem likely involves potentially large and

line instabilities; however, suction stabilizes these '”Sta'muIti-frequency—muIti-wave-number 3D disturbances.

bilities.  Furthermore, three-dimensional instabilities yon00 the explanation for bypass transition will involve

were more stable than two-dimensional, or quasi-two-yeqe muitiple modes, which may be generated off the

dimensional, instabilities. attachment line. Furthermore, the fully 3D DNS results
Subcritical nonlinear disturbance growth was have shown that disturbance packets generated off but

detected with a weakly nonlinear theory and computa-"€ar the attachment line can transfer energy to the attach-

tions by Hall and Malik. Later, DNS studies by Theofilis Ment-line region.

and Jiménez et al. failed to find this nonlinear distur- . . . .
bance growth. The present 2D and 3D simulations have __Hall and Seddougui studied oblique waves and their
detected nonlinear subcritical disturbance growth; these!Nt€raction in attachment-line flow at the large Reynolds

results support the former theoretical and computationalnumber limit. They not(_e.that clo_se to the attachment_ line
results of Hall and Malik. Based on the present results,® small band of destabilized oblique modes appear, inter-

the computations by Theofilis may not have achieved ¢t With the 2D mode, and cause a breakdown of the 2D

subcritical growth because the forcing amplitudes were Mode. Furthermore, Lin and Malik have shown that
apparently too small. Furthermore, Jiménez et al. appar—many symmetric and asymmetric disturbances exist with

ently used a different disturbance pressure form in thell® attachment-line region. Although these symmetric

flow-acceleration direction. The present study showed ang a_l?yrr;metr_lc d'Sttlf.rba;Cbes :nﬁ Ilnzalr\l/ly I_sl;table r']n the
that this assumed variation in pressure leads to a decay=tPcrtical region outinea by Hall and Malik, perhaps

ing subcritical mode, which qualitatively agrees with the some combination of small (buf[ finite) amplitude dlst_ur- .
results of Jiménez et al. These results suggest that th831c€S may cause catastrophic breakdown scenarios in

reason for the discrepancy may evidently be attributablel'® _Subcritical region. A future study which would

to differing disturbance pressure forms. The 3D DNs NVolve multiple combinations of finite-amplitude 2D
results tend to support the pressure form used by Hal@"d 3D symmetric and asymmetric modes in the subcriti-
and Malik for the types of disturbances considered. TheC@ région may lead to a better understanding of the
difference in pressure form suggests that for 3D distur- Reyno[ds number region bgtween the linear instability
bances subcritical growth is not assured based on 20ANd Point where turbulence is suppressed.

simulation results and that a full 3D nonlinear study

would be warranted.
NASA Langley Research Center
Furthermore, the DNS results demonstrate thatHampton, VA 23681-0001

steady suction stabilizes the otherwise nonlinearly grow- October 16, 1996
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